Cargando…
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
The reliability and health of bushings in high-voltage (HV) power transformers is essential in the power supply industry, as any unexpected failure can cause power outage leading to heavy financial losses. The challenge is to identify the point at which insulation deterioration puts the bushing at a...
Autores principales: | Mitiche, Imene, McGrail, Tony, Boreham, Philip, Nesbitt, Alan, Morison, Gordon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588025/ https://www.ncbi.nlm.nih.gov/pubmed/34770731 http://dx.doi.org/10.3390/s21217426 |
Ejemplares similares
-
Entropy-Based Feature Extraction for Electromagnetic Discharges Classification in High-Voltage Power Generation
por: Mitiche, Imene, et al.
Publicado: (2018) -
Dynamic Noise Reduction with Deep Residual Shrinkage Networks for Online Fault Classification
por: Salimy, Alireza, et al.
Publicado: (2022) -
Classification of Partial Discharge Signals by Combining Adaptive Local Iterative Filtering and Entropy Features
por: Mitiche, Imene, et al.
Publicado: (2018) -
Imaging Time Series for the Classification of EMI Discharge Sources
por: Mitiche, Imene, et al.
Publicado: (2018) -
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019)