Cargando…
Evaluating High-Variance Leaves as Uncertainty Measure for Random Forest Regression
Uncertainty measures estimate the reliability of a predictive model. Especially in the field of molecular property prediction as part of drug design, model reliability is crucial. Besides other techniques, Random Forests have a long tradition in machine learning related to chemoinformatics and are w...
Autores principales: | Dutschmann, Thomas-Martin, Baumann, Knut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588039/ https://www.ncbi.nlm.nih.gov/pubmed/34770921 http://dx.doi.org/10.3390/molecules26216514 |
Ejemplares similares
-
Large-scale evaluation of k-fold cross-validation ensembles for uncertainty estimation
por: Dutschmann, Thomas-Martin, et al.
Publicado: (2023) -
Primer of applied regression and analysis of variance
por: Glantz, Stanton A.
Publicado: (1990) -
Multiple regression and the analysis of variance and covariance /
por: Edwards, Allen Louis
Publicado: (1985) -
Multiple regression and the analysis of variance and covariance
por: Edwards, A L
Publicado: (1979) -
Covariance regression with random forests
por: Alakus, Cansu, et al.
Publicado: (2023)