Cargando…
Improvement of the Force Field for β-d-Glucose with Machine Learning
While the construction of a dependable force field for performing classical molecular dynamics (MD) simulation is crucial for elucidating the structure and function of biomolecular systems, the attempts to do this for glycans are relatively sparse compared to those for proteins and nucleic acids. Cu...
Autores principales: | Ikejo, Makoto, Watanabe, Hirofumi, Shimamura, Kohei, Tanaka, Shigenori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588059/ https://www.ncbi.nlm.nih.gov/pubmed/34771103 http://dx.doi.org/10.3390/molecules26216691 |
Ejemplares similares
-
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Energy-free machine learning force field for aluminum
por: Kruglov, Ivan, et al.
Publicado: (2017) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019) -
Algorithmic
Differentiation for Automated Modeling
of Machine Learned Force Fields
por: Schmitz, Niklas Frederik, et al.
Publicado: (2022)