Cargando…
Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes
The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588064/ https://www.ncbi.nlm.nih.gov/pubmed/34770943 http://dx.doi.org/10.3390/molecules26216534 |
_version_ | 1784598344530657280 |
---|---|
author | Gerasimova, Elena L. Gazizullina, Elena R. Borisova, Maria V. Igdisanova, Dinara I. Nikiforov, Egor A. Moseev, Timofey D. Varaksin, Mikhail V. Chupakhin, Oleg N. Charushin, Valery N. Ivanova, Alla V. |
author_facet | Gerasimova, Elena L. Gazizullina, Elena R. Borisova, Maria V. Igdisanova, Dinara I. Nikiforov, Egor A. Moseev, Timofey D. Varaksin, Mikhail V. Chupakhin, Oleg N. Charushin, Valery N. Ivanova, Alla V. |
author_sort | Gerasimova, Elena L. |
collection | PubMed |
description | The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (10(4) mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds. |
format | Online Article Text |
id | pubmed-8588064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85880642021-11-13 Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes Gerasimova, Elena L. Gazizullina, Elena R. Borisova, Maria V. Igdisanova, Dinara I. Nikiforov, Egor A. Moseev, Timofey D. Varaksin, Mikhail V. Chupakhin, Oleg N. Charushin, Valery N. Ivanova, Alla V. Molecules Article The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship “structure-antioxidant properties” was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (10(4) mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds. MDPI 2021-10-29 /pmc/articles/PMC8588064/ /pubmed/34770943 http://dx.doi.org/10.3390/molecules26216534 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gerasimova, Elena L. Gazizullina, Elena R. Borisova, Maria V. Igdisanova, Dinara I. Nikiforov, Egor A. Moseev, Timofey D. Varaksin, Mikhail V. Chupakhin, Oleg N. Charushin, Valery N. Ivanova, Alla V. Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_full | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_fullStr | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_full_unstemmed | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_short | Design and Antioxidant Properties of Bifunctional 2H-Imidazole-Derived Phenolic Compounds—A New Family of Effective Inhibitors for Oxidative Stress-Associated Destructive Processes |
title_sort | design and antioxidant properties of bifunctional 2h-imidazole-derived phenolic compounds—a new family of effective inhibitors for oxidative stress-associated destructive processes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588064/ https://www.ncbi.nlm.nih.gov/pubmed/34770943 http://dx.doi.org/10.3390/molecules26216534 |
work_keys_str_mv | AT gerasimovaelenal designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT gazizullinaelenar designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT borisovamariav designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT igdisanovadinarai designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT nikiforovegora designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT moseevtimofeyd designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT varaksinmikhailv designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT chupakhinolegn designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT charushinvaleryn designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses AT ivanovaallav designandantioxidantpropertiesofbifunctional2himidazolederivedphenoliccompoundsanewfamilyofeffectiveinhibitorsforoxidativestressassociateddestructiveprocesses |