Cargando…
Toward Robust Non-Intrusive Load Monitoring via Probability Model Framed Ensemble Method
As a pivotal technological foundation for smart home implementation, non-intrusive load monitoring is emerging as a widely recognized and popular technology to replace the sensors or sockets networks for the detailed household appliance monitoring. In this paper, a probability model framed ensemble...
Autores principales: | Liu, Yu, Wang, Yan, Hong, Yu, Shi, Qianyun, Gao, Shan, Huang, Xueliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588073/ https://www.ncbi.nlm.nih.gov/pubmed/34770579 http://dx.doi.org/10.3390/s21217272 |
Ejemplares similares
-
An Enhanced Ensemble Approach for Non-Intrusive Energy Use Monitoring Based on Multidimensional Heterogeneity
por: Liu, Yu, et al.
Publicado: (2021) -
Deep Adaptive Ensemble Filter for Non-Intrusive Residential Load Monitoring
por: Kianpoor, Nasrin, et al.
Publicado: (2023) -
Non-Intrusive Load Monitoring
por: Fortuna, Luigi, et al.
Publicado: (2022) -
Robust genetic machine learning ensemble model for intrusion detection in network traffic
por: Akhtar, Muhammad Ali, et al.
Publicado: (2023) -
Towards Trustworthy Energy Disaggregation: A Review of Challenges, Methods, and Perspectives for Non-Intrusive Load Monitoring
por: Kaselimi, Maria, et al.
Publicado: (2022)