Cargando…
Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning
Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588081/ https://www.ncbi.nlm.nih.gov/pubmed/34770345 http://dx.doi.org/10.3390/s21217038 |
_version_ | 1784598348843450368 |
---|---|
author | Althnian, Alhanoof Almanea, Nada Aloboud, Nourah |
author_facet | Althnian, Alhanoof Almanea, Nada Aloboud, Nourah |
author_sort | Althnian, Alhanoof |
collection | PubMed |
description | Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye images using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer learning approach based on eye, skin, and fused images. We also trained well-known traditional machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF), and compared their performance with that of the transfer learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve (AUC) for all the experiments and analyzed their significance statistically. Our results indicate that the transfer learning model performed the best with skin images, while traditional models achieved the best performance with eyes and fused features. Further, we found that the transfer learning model with skin features performed comparably to the MLP model with eye features. |
format | Online Article Text |
id | pubmed-8588081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85880812021-11-13 Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning Althnian, Alhanoof Almanea, Nada Aloboud, Nourah Sensors (Basel) Article Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye images using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer learning approach based on eye, skin, and fused images. We also trained well-known traditional machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF), and compared their performance with that of the transfer learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve (AUC) for all the experiments and analyzed their significance statistically. Our results indicate that the transfer learning model performed the best with skin images, while traditional models achieved the best performance with eyes and fused features. Further, we found that the transfer learning model with skin features performed comparably to the MLP model with eye features. MDPI 2021-10-23 /pmc/articles/PMC8588081/ /pubmed/34770345 http://dx.doi.org/10.3390/s21217038 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Althnian, Alhanoof Almanea, Nada Aloboud, Nourah Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title | Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title_full | Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title_fullStr | Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title_full_unstemmed | Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title_short | Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning |
title_sort | neonatal jaundice diagnosis using a smartphone camera based on eye, skin, and fused features with transfer learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588081/ https://www.ncbi.nlm.nih.gov/pubmed/34770345 http://dx.doi.org/10.3390/s21217038 |
work_keys_str_mv | AT althnianalhanoof neonataljaundicediagnosisusingasmartphonecamerabasedoneyeskinandfusedfeatureswithtransferlearning AT almaneanada neonataljaundicediagnosisusingasmartphonecamerabasedoneyeskinandfusedfeatureswithtransferlearning AT aloboudnourah neonataljaundicediagnosisusingasmartphonecamerabasedoneyeskinandfusedfeatureswithtransferlearning |