Cargando…
Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS
The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588099/ https://www.ncbi.nlm.nih.gov/pubmed/34771153 http://dx.doi.org/10.3390/molecules26216745 |
_version_ | 1784598354609569792 |
---|---|
author | Wang, Yueyue Shi, Yufeng Li, Kaiyuan Yang, Dong Liu, Nana Zhang, Lingjie Zhao, Lei Zhang, Xinfu Liu, Yajun Gao, Liping Xia, Tao Wang, Peiqiang |
author_facet | Wang, Yueyue Shi, Yufeng Li, Kaiyuan Yang, Dong Liu, Nana Zhang, Lingjie Zhao, Lei Zhang, Xinfu Liu, Yajun Gao, Liping Xia, Tao Wang, Peiqiang |
author_sort | Wang, Yueyue |
collection | PubMed |
description | The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone 3β-hydroxylase (F3H), flavones synthase I (FNS I), flavonol synthase (FLS), and anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX), are present in the flavonoid pathway, catalyzing hydroxylation and desaturation reactions. In this review, we summarize the recent research progress on these proteins, from the discovery of their enzymatic activity, to their functional verification, to the analysis of the response they mediate in plants towards adversity. Substrate diversity analysis indicated that F3H, FNS Ⅰ, ANS/LDOX, and FLS perform their respective dominant functions in the flavonoid pathway, despite the presence of functional redundancy among them. The phylogenetic tree classified two types of FNS Ⅰ, one mainly performing FNS activity, and the other, a new type of FNS present in angiosperms, mainly involved in C-5 hydroxylation of SA. Additionally, a new class of LDOXs is highlighted, which can catalyze the conversion of (+)-catechin to cyanidin, further influencing the starter and extension unit composition of proanthocyanidins (PAs). The systematical description of the functional diversity and evolutionary relationship among these enzymes can facilitate the understanding of their impacts on plant metabolism. On the other hand, it provides molecular genetic evidence of the chemical evolution of flavonoids from lower to higher plants, promoting plant adaptation to harsh environments. |
format | Online Article Text |
id | pubmed-8588099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85880992021-11-13 Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS Wang, Yueyue Shi, Yufeng Li, Kaiyuan Yang, Dong Liu, Nana Zhang, Lingjie Zhao, Lei Zhang, Xinfu Liu, Yajun Gao, Liping Xia, Tao Wang, Peiqiang Molecules Review The 2-oxoglutarate-dependent dioxygenase (2-OGD) superfamily is one of the largest protein families in plants. The main oxidation reactions they catalyze in plants are hydroxylation, desaturation, demethylation, epimerization, and halogenation. Four members of the 2-OGD superfamily, i.e., flavonone 3β-hydroxylase (F3H), flavones synthase I (FNS I), flavonol synthase (FLS), and anthocyanidin synthase (ANS)/leucoanthocyanidin dioxygenase (LDOX), are present in the flavonoid pathway, catalyzing hydroxylation and desaturation reactions. In this review, we summarize the recent research progress on these proteins, from the discovery of their enzymatic activity, to their functional verification, to the analysis of the response they mediate in plants towards adversity. Substrate diversity analysis indicated that F3H, FNS Ⅰ, ANS/LDOX, and FLS perform their respective dominant functions in the flavonoid pathway, despite the presence of functional redundancy among them. The phylogenetic tree classified two types of FNS Ⅰ, one mainly performing FNS activity, and the other, a new type of FNS present in angiosperms, mainly involved in C-5 hydroxylation of SA. Additionally, a new class of LDOXs is highlighted, which can catalyze the conversion of (+)-catechin to cyanidin, further influencing the starter and extension unit composition of proanthocyanidins (PAs). The systematical description of the functional diversity and evolutionary relationship among these enzymes can facilitate the understanding of their impacts on plant metabolism. On the other hand, it provides molecular genetic evidence of the chemical evolution of flavonoids from lower to higher plants, promoting plant adaptation to harsh environments. MDPI 2021-11-08 /pmc/articles/PMC8588099/ /pubmed/34771153 http://dx.doi.org/10.3390/molecules26216745 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Wang, Yueyue Shi, Yufeng Li, Kaiyuan Yang, Dong Liu, Nana Zhang, Lingjie Zhao, Lei Zhang, Xinfu Liu, Yajun Gao, Liping Xia, Tao Wang, Peiqiang Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title | Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title_full | Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title_fullStr | Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title_full_unstemmed | Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title_short | Roles of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily in the Flavonoid Pathway: A Review of the Functional Diversity of F3H, FNS I, FLS, and LDOX/ANS |
title_sort | roles of the 2-oxoglutarate-dependent dioxygenase superfamily in the flavonoid pathway: a review of the functional diversity of f3h, fns i, fls, and ldox/ans |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588099/ https://www.ncbi.nlm.nih.gov/pubmed/34771153 http://dx.doi.org/10.3390/molecules26216745 |
work_keys_str_mv | AT wangyueyue rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT shiyufeng rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT likaiyuan rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT yangdong rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT liunana rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT zhanglingjie rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT zhaolei rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT zhangxinfu rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT liuyajun rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT gaoliping rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT xiatao rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans AT wangpeiqiang rolesofthe2oxoglutaratedependentdioxygenasesuperfamilyintheflavonoidpathwayareviewofthefunctionaldiversityoff3hfnsiflsandldoxans |