Cargando…
Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification
Motor Imagery (MI)-based Brain–Computer Interfaces (BCIs) have been widely used as an alternative communication channel to patients with severe motor disabilities, achieving high classification accuracy through machine learning techniques. Recently, deep learning techniques have spotlighted the stat...
Autores principales: | Milanés-Hermosilla, Daily, Trujillo Codorniú, Rafael, López-Baracaldo, René, Sagaró-Zamora, Roberto, Delisle-Rodriguez, Denis, Villarejo-Mayor, John Jairo, Núñez-Álvarez, José Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588128/ https://www.ncbi.nlm.nih.gov/pubmed/34770553 http://dx.doi.org/10.3390/s21217241 |
Ejemplares similares
-
Robust Motor Imagery Tasks Classification Approach Using Bayesian Neural Network
por: Milanés-Hermosilla, Daily, et al.
Publicado: (2023) -
UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection
por: Abdar, Moloud, et al.
Publicado: (2023) -
Improving the repeatability of deep learning models with Monte Carlo dropout
por: Lemay, Andreanne, et al.
Publicado: (2022) -
Robotic therapy for the hemiplegic shoulder pain: a pilot study
por: Serrezuela, Ruthber Rodríguez, et al.
Publicado: (2020) -
Noise-Parameter Uncertainties: A Monte Carlo Simulation
por: Randa, J.
Publicado: (2002)