Cargando…
Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph
Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is there...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588190/ https://www.ncbi.nlm.nih.gov/pubmed/34770356 http://dx.doi.org/10.3390/s21217049 |
_version_ | 1784598384227647488 |
---|---|
author | Li, Chun-Wei Lin, Szu-Yin Chou, He-Sheng Chen, Tsung-Yi Chen, Yu-An Liu, Sheng-Yu Liu, Yu-Lin Chen, Chiung-An Huang, Yen-Cheng Chen, Shih-Lun Mao, Yi-Cheng Abu, Patricia Angela R. Chiang, Wei-Yuan Lo, Wen-Shen |
author_facet | Li, Chun-Wei Lin, Szu-Yin Chou, He-Sheng Chen, Tsung-Yi Chen, Yu-An Liu, Sheng-Yu Liu, Yu-Lin Chen, Chiung-An Huang, Yen-Cheng Chen, Shih-Lun Mao, Yi-Cheng Abu, Patricia Angela R. Chiang, Wei-Yuan Lo, Wen-Shen |
author_sort | Li, Chun-Wei |
collection | PubMed |
description | Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion. |
format | Online Article Text |
id | pubmed-8588190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85881902021-11-13 Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph Li, Chun-Wei Lin, Szu-Yin Chou, He-Sheng Chen, Tsung-Yi Chen, Yu-An Liu, Sheng-Yu Liu, Yu-Lin Chen, Chiung-An Huang, Yen-Cheng Chen, Shih-Lun Mao, Yi-Cheng Abu, Patricia Angela R. Chiang, Wei-Yuan Lo, Wen-Shen Sensors (Basel) Article Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion. MDPI 2021-10-24 /pmc/articles/PMC8588190/ /pubmed/34770356 http://dx.doi.org/10.3390/s21217049 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Chun-Wei Lin, Szu-Yin Chou, He-Sheng Chen, Tsung-Yi Chen, Yu-An Liu, Sheng-Yu Liu, Yu-Lin Chen, Chiung-An Huang, Yen-Cheng Chen, Shih-Lun Mao, Yi-Cheng Abu, Patricia Angela R. Chiang, Wei-Yuan Lo, Wen-Shen Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title | Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title_full | Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title_fullStr | Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title_full_unstemmed | Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title_short | Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph |
title_sort | detection of dental apical lesions using cnns on periapical radiograph |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588190/ https://www.ncbi.nlm.nih.gov/pubmed/34770356 http://dx.doi.org/10.3390/s21217049 |
work_keys_str_mv | AT lichunwei detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT linszuyin detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chouhesheng detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chentsungyi detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chenyuan detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT liushengyu detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT liuyulin detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chenchiungan detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT huangyencheng detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chenshihlun detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT maoyicheng detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT abupatriciaangelar detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT chiangweiyuan detectionofdentalapicallesionsusingcnnsonperiapicalradiograph AT lowenshen detectionofdentalapicallesionsusingcnnsonperiapicalradiograph |