Cargando…
Towards ML-Based Diagnostics of Laser–Plasma Interactions
The power of machine learning (ML) in feature identification can be harnessed for determining quantities in experiments that are difficult to measure directly. However, if an ML model is trained on simulated data, rather than experimental results, the differences between the two can pose an obstacle...
Autores principales: | Rodimkov, Yury, Bhadoria, Shikha, Volokitin, Valentin, Efimenko, Evgeny, Polovinkin, Alexey, Blackburn, Thomas, Marklund, Mattias, Gonoskov, Arkady, Meyerov, Iosif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588203/ https://www.ncbi.nlm.nih.gov/pubmed/34770288 http://dx.doi.org/10.3390/s21216982 |
Ejemplares similares
-
ML-Based Analysis of Particle Distributions in High-Intensity Laser Experiments: Role of Binning Strategy
por: Rodimkov, Yury, et al.
Publicado: (2020) -
Extreme plasma states in laser-governed vacuum breakdown
por: Efimenko, Evgeny S., et al.
Publicado: (2018) -
Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics
por: Gonoskov, A., et al.
Publicado: (2019) -
Transforming Lindblad Equations into Systems of Real-Valued Linear Equations: Performance Optimization and Parallelization of an Algorithm
por: Meyerov, Iosif, et al.
Publicado: (2020) -
Performance and Scalability Analysis of CNN-based Deep Learning Inference in the Intel Distribution of OpenVINO Toolkit
por: Meyerov, Iosif
Publicado: (2019)