Cargando…
Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips
Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the steel quality and cause substantial economic and reputation losses. Roll marks, always occurring periodically in a large area, are put on the top of the list of the most serious defects by steel mills. Es...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588222/ https://www.ncbi.nlm.nih.gov/pubmed/34770572 http://dx.doi.org/10.3390/s21217264 |
_version_ | 1784598393757106176 |
---|---|
author | Luo, Qiwu Jiang, Weiqiang Su, Jiaojiao Ai, Jiaqiu Yang, Chunhua |
author_facet | Luo, Qiwu Jiang, Weiqiang Su, Jiaojiao Ai, Jiaqiu Yang, Chunhua |
author_sort | Luo, Qiwu |
collection | PubMed |
description | Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the steel quality and cause substantial economic and reputation losses. Roll marks, always occurring periodically in a large area, are put on the top of the list of the most serious defects by steel mills. Essentially, the online roll mark detection is a tiny target inspection task in high-resolution images captured under harsh environment. In this paper, a novel method—namely, Smoothing Complete Feature Pyramid Networks (SCFPN)—is proposed for the above focused task. In particular, the concept of complete intersection over union (CIoU) is applied in feature pyramid networks to obtain faster fitting speed and higher prediction accuracy by suppressing the vanishing gradient in training process. Furthermore, label smoothing is employed to promote the generalization ability of model. In view of lack of public surface image database of steel strips, a raw defect database of hot-rolled steel strip surface, CSU_STEEL, is opened for the first time. Experiments on two public databases (DeepPCB and NEU) and one fresh texture database (CSU_STEEL) indicate that our SCFPN yields more competitive results than several prestigious networks—including Faster R-CNN, SSD, YOLOv3, YOLOv4, FPN, DIN, DDN, and CFPN. |
format | Online Article Text |
id | pubmed-8588222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85882222021-11-13 Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips Luo, Qiwu Jiang, Weiqiang Su, Jiaojiao Ai, Jiaqiu Yang, Chunhua Sensors (Basel) Article Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the steel quality and cause substantial economic and reputation losses. Roll marks, always occurring periodically in a large area, are put on the top of the list of the most serious defects by steel mills. Essentially, the online roll mark detection is a tiny target inspection task in high-resolution images captured under harsh environment. In this paper, a novel method—namely, Smoothing Complete Feature Pyramid Networks (SCFPN)—is proposed for the above focused task. In particular, the concept of complete intersection over union (CIoU) is applied in feature pyramid networks to obtain faster fitting speed and higher prediction accuracy by suppressing the vanishing gradient in training process. Furthermore, label smoothing is employed to promote the generalization ability of model. In view of lack of public surface image database of steel strips, a raw defect database of hot-rolled steel strip surface, CSU_STEEL, is opened for the first time. Experiments on two public databases (DeepPCB and NEU) and one fresh texture database (CSU_STEEL) indicate that our SCFPN yields more competitive results than several prestigious networks—including Faster R-CNN, SSD, YOLOv3, YOLOv4, FPN, DIN, DDN, and CFPN. MDPI 2021-10-31 /pmc/articles/PMC8588222/ /pubmed/34770572 http://dx.doi.org/10.3390/s21217264 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Qiwu Jiang, Weiqiang Su, Jiaojiao Ai, Jiaqiu Yang, Chunhua Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title | Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title_full | Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title_fullStr | Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title_full_unstemmed | Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title_short | Smoothing Complete Feature Pyramid Networks for Roll Mark Detection of Steel Strips |
title_sort | smoothing complete feature pyramid networks for roll mark detection of steel strips |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588222/ https://www.ncbi.nlm.nih.gov/pubmed/34770572 http://dx.doi.org/10.3390/s21217264 |
work_keys_str_mv | AT luoqiwu smoothingcompletefeaturepyramidnetworksforrollmarkdetectionofsteelstrips AT jiangweiqiang smoothingcompletefeaturepyramidnetworksforrollmarkdetectionofsteelstrips AT sujiaojiao smoothingcompletefeaturepyramidnetworksforrollmarkdetectionofsteelstrips AT aijiaqiu smoothingcompletefeaturepyramidnetworksforrollmarkdetectionofsteelstrips AT yangchunhua smoothingcompletefeaturepyramidnetworksforrollmarkdetectionofsteelstrips |