Cargando…
Small Object Detection in Traffic Scenes Based on YOLO-MXANet
In terms of small objects in traffic scenes, general object detection algorithms have low detection accuracy, high model complexity, and slow detection speed. To solve the above problems, an improved algorithm (named YOLO-MXANet) is proposed in this paper. Complete-Intersection over Union (CIoU) is...
Autores principales: | He, Xiaowei, Cheng, Rao, Zheng, Zhonglong, Wang, Zeji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588269/ https://www.ncbi.nlm.nih.gov/pubmed/34770726 http://dx.doi.org/10.3390/s21217422 |
Ejemplares similares
-
STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments
por: Lai, Huaqing, et al.
Publicado: (2023) -
AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
por: Yan, Bingnan, et al.
Publicado: (2022) -
Small Object Detection in Traffic Scenes Based on Attention Feature Fusion
por: Lian, Jing, et al.
Publicado: (2021) -
Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images
por: Hu, Mengzi, et al.
Publicado: (2023) -
YOLO-G: Improved YOLO for cross-domain object detection
por: Wei, Jian, et al.
Publicado: (2023)