Cargando…
Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults
Falls are a major cause of morbidity and mortality in neurological disorders. Technical means of detecting falls are of high interest as they enable rapid notification of caregivers and emergency services. Such approaches must reliably differentiate between normal daily activities and fall events. A...
Autores principales: | Alizadeh, Jalal, Bogdan, Martin, Classen, Joseph, Fricke, Christopher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588363/ https://www.ncbi.nlm.nih.gov/pubmed/34770473 http://dx.doi.org/10.3390/s21217166 |
Ejemplares similares
-
Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders
por: Fricke, Christopher, et al.
Publicado: (2021) -
On the generalizability of resting-state fMRI machine learning classifiers
por: Huf, Wolfgang, et al.
Publicado: (2014) -
Support vector machines classifiers of physical activities in preschoolers
por: Zhao, Wei, et al.
Publicado: (2013) -
Classifying Dysphagic Swallowing Sounds with Support Vector Machines
por: Miyagi, Shigeyuki, et al.
Publicado: (2020) -
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
por: Chao, Chih-Feng, et al.
Publicado: (2015)