Cargando…
Analysis of Graphomotor Tests with Machine Learning Algorithms for an Early and Universal Pre-Diagnosis of Dysgraphia
Five to ten percent of school-aged children display dysgraphia, a neuro-motor disorder that causes difficulties in handwriting, which becomes a handicap in the daily life of these children. Yet, the diagnosis of dysgraphia remains tedious, subjective and dependent to the language besides stepping in...
Autores principales: | Devillaine, Louis, Lambert, Raphaël, Boutet, Jérôme, Aloui, Saifeddine, Brault, Vincent, Jolly, Caroline, Labyt, Etienne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588387/ https://www.ncbi.nlm.nih.gov/pubmed/34770333 http://dx.doi.org/10.3390/s21217026 |
Ejemplares similares
-
Methodological issues in the creation of a diagnosis tool for dysgraphia
por: Deschamps, Louis, et al.
Publicado: (2019) -
Dysgraphia detection through machine learning
por: Drotár, Peter, et al.
Publicado: (2020) -
Rhythmic training, literacy, and graphomotor skills in kindergarteners
por: Frey, Aline, et al.
Publicado: (2022) -
Reply: Limitations in the creation of an automatic diagnosis tool for dysgraphia
por: Asselborn, Thibault, et al.
Publicado: (2019) -
Deep Dysgraphia in Turkish
por: Raman, Ilhan, et al.
Publicado: (2005)