Cargando…
Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System
Physiological signals are immediate and sensitive to neurological changes resulting from the mental workload induced by various driving environments and are considered a quantifying tool for understanding the association between neurological outcomes and driving cognitive workloads. Neurological ass...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588463/ https://www.ncbi.nlm.nih.gov/pubmed/34770304 http://dx.doi.org/10.3390/s21216985 |
_version_ | 1784598466731704320 |
---|---|
author | Hussain, Iqram Young, Seo Park, Se-Jin |
author_facet | Hussain, Iqram Young, Seo Park, Se-Jin |
author_sort | Hussain, Iqram |
collection | PubMed |
description | Physiological signals are immediate and sensitive to neurological changes resulting from the mental workload induced by various driving environments and are considered a quantifying tool for understanding the association between neurological outcomes and driving cognitive workloads. Neurological assessment, outside of a highly-equipped clinical setting, requires an ambulatory electroencephalography (EEG) headset. This study aimed to quantify neurological biomarkers during a resting state and two different scenarios of driving states in a virtual driving environment. We investigated the neurological responses of seventeen healthy male drivers. EEG data were measured in an initial resting state, city-roadways driving state, and expressway driving state using a portable EEG headset in a driving simulator. During the experiment, the participants drove while experiencing cognitive workloads due to various driving environments, such as road traffic conditions, lane changes of surrounding vehicles, the speed limit, etc. The power of the beta and gamma bands decreased, and the power of the delta waves, theta, and frontal theta asymmetry increased in the driving state relative to the resting state. Delta-alpha ratio (DAR) and delta-theta ratio (DTR) showed a strong correlation with a resting state, city-roadways driving state, and expressway driving state. Binary machine-learning (ML) classification models showed a near-perfect accuracy between the resting state and driving state. Moderate classification performances were observed between the resting state, city-roadways state, and expressway state in multi-class classification. An EEG-based neurological state prediction approach may be utilized in an advanced driver-assistance system (ADAS). |
format | Online Article Text |
id | pubmed-8588463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85884632021-11-13 Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System Hussain, Iqram Young, Seo Park, Se-Jin Sensors (Basel) Article Physiological signals are immediate and sensitive to neurological changes resulting from the mental workload induced by various driving environments and are considered a quantifying tool for understanding the association between neurological outcomes and driving cognitive workloads. Neurological assessment, outside of a highly-equipped clinical setting, requires an ambulatory electroencephalography (EEG) headset. This study aimed to quantify neurological biomarkers during a resting state and two different scenarios of driving states in a virtual driving environment. We investigated the neurological responses of seventeen healthy male drivers. EEG data were measured in an initial resting state, city-roadways driving state, and expressway driving state using a portable EEG headset in a driving simulator. During the experiment, the participants drove while experiencing cognitive workloads due to various driving environments, such as road traffic conditions, lane changes of surrounding vehicles, the speed limit, etc. The power of the beta and gamma bands decreased, and the power of the delta waves, theta, and frontal theta asymmetry increased in the driving state relative to the resting state. Delta-alpha ratio (DAR) and delta-theta ratio (DTR) showed a strong correlation with a resting state, city-roadways driving state, and expressway driving state. Binary machine-learning (ML) classification models showed a near-perfect accuracy between the resting state and driving state. Moderate classification performances were observed between the resting state, city-roadways state, and expressway state in multi-class classification. An EEG-based neurological state prediction approach may be utilized in an advanced driver-assistance system (ADAS). MDPI 2021-10-21 /pmc/articles/PMC8588463/ /pubmed/34770304 http://dx.doi.org/10.3390/s21216985 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hussain, Iqram Young, Seo Park, Se-Jin Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title | Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title_full | Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title_fullStr | Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title_full_unstemmed | Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title_short | Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System |
title_sort | driving-induced neurological biomarkers in an advanced driver-assistance system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588463/ https://www.ncbi.nlm.nih.gov/pubmed/34770304 http://dx.doi.org/10.3390/s21216985 |
work_keys_str_mv | AT hussainiqram drivinginducedneurologicalbiomarkersinanadvanceddriverassistancesystem AT youngseo drivinginducedneurologicalbiomarkersinanadvanceddriverassistancesystem AT parksejin drivinginducedneurologicalbiomarkersinanadvanceddriverassistancesystem |