Cargando…

Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates

In this paper, the analysis of non-contact elastic waves generation in carbon fiber reinforced-polymer (CFRP) plate was conducted. Full non-contact elastic waves generation and sensing methods were also analyzed. Elastic waves generation was based on an air-coupled transducer (ACT) while waves sensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wandowski, Tomasz, Mindykowski, Damian, Kudela, Pawel, Radzienski, Maciej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588506/
https://www.ncbi.nlm.nih.gov/pubmed/34770440
http://dx.doi.org/10.3390/s21217134
_version_ 1784598478038499328
author Wandowski, Tomasz
Mindykowski, Damian
Kudela, Pawel
Radzienski, Maciej
author_facet Wandowski, Tomasz
Mindykowski, Damian
Kudela, Pawel
Radzienski, Maciej
author_sort Wandowski, Tomasz
collection PubMed
description In this paper, the analysis of non-contact elastic waves generation in carbon fiber reinforced-polymer (CFRP) plate was conducted. Full non-contact elastic waves generation and sensing methods were also analyzed. Elastic waves generation was based on an air-coupled transducer (ACT) while waves sensing was based on a laser Doppler vibrometer. The excitation frequency was equal to 40 kHz. An optimal ACT slope angle for the generation of elastic waves mode was determined with the aid of dispersion curves calculated by using a semi-analytical model. Due to the stack sequence in the composite plate (unidirectional composite), ACT slope angles were different for waves generation in the direction along and across reinforcing fibers direction. Moreover, experimental verification of the optimal ACT slope angles was conducted. It was possible to generate A(0) wave mode in the direction along and across the reinforcing fibers. Optimal angles determined using ACT were equal to 16° (along fibers) and 34° (across fibers). In the case of optimal angles, elastic waves amplitudes are almost two times higher than for the case of ACT oriented perpendicularly to the plate surface. Moreover, experimental results based on ACT showed that it was possible to generate the SH(0) mode in the direction across the fiber for optimal angles equal to 10°. Finally, based on the A(0) wave mode propagation, the process for localization of discontinuities was performed. Discontinuities in the form of additional mass simulating damage were investigated. A simple signal processing algorithm based on elastic wave energy was used for creating damage maps. Authors compared discontinuity localization for ACT oriented perpendicularly to the plate and at the optimal slope angle. The utilization of non-contact waves excitation at optimal ACT slope angles helped to focus the wave energy in the desired direction. Moreover, in this case, elastic waves with the highest amplitudes were generated.
format Online
Article
Text
id pubmed-8588506
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85885062021-11-13 Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates Wandowski, Tomasz Mindykowski, Damian Kudela, Pawel Radzienski, Maciej Sensors (Basel) Article In this paper, the analysis of non-contact elastic waves generation in carbon fiber reinforced-polymer (CFRP) plate was conducted. Full non-contact elastic waves generation and sensing methods were also analyzed. Elastic waves generation was based on an air-coupled transducer (ACT) while waves sensing was based on a laser Doppler vibrometer. The excitation frequency was equal to 40 kHz. An optimal ACT slope angle for the generation of elastic waves mode was determined with the aid of dispersion curves calculated by using a semi-analytical model. Due to the stack sequence in the composite plate (unidirectional composite), ACT slope angles were different for waves generation in the direction along and across reinforcing fibers direction. Moreover, experimental verification of the optimal ACT slope angles was conducted. It was possible to generate A(0) wave mode in the direction along and across the reinforcing fibers. Optimal angles determined using ACT were equal to 16° (along fibers) and 34° (across fibers). In the case of optimal angles, elastic waves amplitudes are almost two times higher than for the case of ACT oriented perpendicularly to the plate surface. Moreover, experimental results based on ACT showed that it was possible to generate the SH(0) mode in the direction across the fiber for optimal angles equal to 10°. Finally, based on the A(0) wave mode propagation, the process for localization of discontinuities was performed. Discontinuities in the form of additional mass simulating damage were investigated. A simple signal processing algorithm based on elastic wave energy was used for creating damage maps. Authors compared discontinuity localization for ACT oriented perpendicularly to the plate and at the optimal slope angle. The utilization of non-contact waves excitation at optimal ACT slope angles helped to focus the wave energy in the desired direction. Moreover, in this case, elastic waves with the highest amplitudes were generated. MDPI 2021-10-27 /pmc/articles/PMC8588506/ /pubmed/34770440 http://dx.doi.org/10.3390/s21217134 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wandowski, Tomasz
Mindykowski, Damian
Kudela, Pawel
Radzienski, Maciej
Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title_full Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title_fullStr Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title_full_unstemmed Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title_short Analysis of Air-Coupled Transducer-Based Elastic Waves Generation in CFRP Plates
title_sort analysis of air-coupled transducer-based elastic waves generation in cfrp plates
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588506/
https://www.ncbi.nlm.nih.gov/pubmed/34770440
http://dx.doi.org/10.3390/s21217134
work_keys_str_mv AT wandowskitomasz analysisofaircoupledtransducerbasedelasticwavesgenerationincfrpplates
AT mindykowskidamian analysisofaircoupledtransducerbasedelasticwavesgenerationincfrpplates
AT kudelapawel analysisofaircoupledtransducerbasedelasticwavesgenerationincfrpplates
AT radzienskimaciej analysisofaircoupledtransducerbasedelasticwavesgenerationincfrpplates