Cargando…
Characteristics of Dough Rheology and the Structural, Mechanical, and Sensory Properties of Sponge Cakes with Sweeteners
Changes in the rheological properties of dough, as well as the microstructural, mechanical, and sensory properties of sponge cakes, as a function of the substitution of sucrose in a formulation with maltitol, erythritol, and trehalose are described. Moreover, the relationship between the examined pr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588515/ https://www.ncbi.nlm.nih.gov/pubmed/34771047 http://dx.doi.org/10.3390/molecules26216638 |
Sumario: | Changes in the rheological properties of dough, as well as the microstructural, mechanical, and sensory properties of sponge cakes, as a function of the substitution of sucrose in a formulation with maltitol, erythritol, and trehalose are described. Moreover, the relationship between the examined properties was investigated. The replacement of sucrose with maltitol or trehalose did not affect the consistency index, whereas erythritol caused a decrease in its value. X-ray tomography was used to obtain the 2D and 3D microstructures of sponge cakes. All studied sweeteners caused the sponge cakes to have a typical porous structure. Erythritol and maltitol resulted in about 50% of the pores being smaller than 0.019 mm(2) and 50% of the pores being larger than 0.032 mm(2). Trehalose resulted in a homogeneous microstructure, 98% of whose pores were similar in size (0.019 to 0.032 mm(2)). The sponge cakes with polyols had a higher structure index than did the trehalose and sucrose samples. There were also significant differences in color parameters (lightness and chromaticity). The crust of the sponge cake with sweeteners was lighter and had a less saturated color than the crust of the sponge cake with sucrose. The sponge cake with maltitol was the most similar to the sponge cake with sucrose, mainly due to the mechanical and sensory properties. Trehalose led to the samples having high adhesiveness, which may limit its application as a sucrose substitute in sponge cake. Sensory properties were strongly correlated to cohesiveness, adhesiveness, and springiness and did not correlate to the 2D and 3D microstructures. It was found that 100% replacement of sucrose allows for a porous structure to be obtained. These results confirm that it is not the structure, but most of all the flavor, that determines the sensory perception of the sponge cakes. |
---|