Cargando…
DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology
In polypharmacology drugs are required to bind to multiple specific targets, for example to enhance efficacy or to reduce resistance formation. Although deep learning has achieved a breakthrough in de novo design in drug discovery, most of its applications only focus on a single drug target to gener...
Autores principales: | Liu, Xuhan, Ye, Kai, van Vlijmen, Herman W. T., Emmerich, Michael T. M., IJzerman, Adriaan P., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588612/ https://www.ncbi.nlm.nih.gov/pubmed/34772471 http://dx.doi.org/10.1186/s13321-021-00561-9 |
Ejemplares similares
-
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning
por: Liu, Xuhan, et al.
Publicado: (2023) -
DrugEx: Deep Learning Models and Tools for Exploration
of Drug-Like Chemical Space
por: Šícho, Martin, et al.
Publicado: (2023) -
An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A(2A) receptor
por: Liu, Xuhan, et al.
Publicado: (2019) -
Quantitative prediction of selectivity between the A(1) and A(2A) adenosine receptors
por: Burggraaff, Lindsey, et al.
Publicado: (2020) -
Polypharmacology: promises and new drugs in 2022
por: Ryszkiewicz, Piotr, et al.
Publicado: (2023)