Cargando…
Corrigendum: Predicting Colorectal Cancer Recurrence and Patient Survival Using Supervised Machine Learning Approach: A South African Population-Based Study
Autores principales: | Achilonu, Okechinyere J., Fabian, June, Bebington, Brendan, Singh, Elvira, Nimako, Gideon, Eijkemans, M. J. C., Musenge, Eustasius |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588828/ https://www.ncbi.nlm.nih.gov/pubmed/34778198 http://dx.doi.org/10.3389/fpubh.2021.778749 |
Ejemplares similares
-
Predicting Colorectal Cancer Recurrence and Patient Survival Using Supervised Machine Learning Approach: A South African Population-Based Study
por: Achilonu, Okechinyere J., et al.
Publicado: (2021) -
Use of Machine Learning and Statistical Algorithms to Predict Hospital Length of Stay Following Colorectal Cancer Resection: A South African Pilot Study
por: Achilonu, Okechinyere J., et al.
Publicado: (2021) -
Rule-Based Information Extraction from Free-Text Pathology Reports Reveals Trends in South African Female Breast Cancer Molecular Subtypes and Ki67 Expression
por: Achilonu, Okechinyere J., et al.
Publicado: (2022) -
Modeling Long-Term Graft Survival With Time-Varying Covariate Effects: An Application to a Single Kidney Transplant Centre in Johannesburg, South Africa
por: Achilonu, Okechinyere J., et al.
Publicado: (2019) -
Predicting HIV infection in the decade (2005–2015) pre-COVID-19 in Zimbabwe: A supervised classification-based machine learning approach
por: Birri Makota, Rutendo Beauty, et al.
Publicado: (2023)