Cargando…
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity (STDP), which is a neuro-inspired unsupervised learning method for various machine learning applications. This paper studies the generalizability properties of the STDP learning processes using the Hausdorff dimension o...
Autores principales: | Chakraborty, Biswadeep, Mukhopadhyay, Saibal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589121/ https://www.ncbi.nlm.nih.gov/pubmed/34776837 http://dx.doi.org/10.3389/fnins.2021.695357 |
Ejemplares similares
-
Heterogeneous recurrent spiking neural network for spatio-temporal classification
por: Chakraborty, Biswadeep, et al.
Publicado: (2023) -
MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning
por: Kim, Daehyun, et al.
Publicado: (2022) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Liu, Fangxin, et al.
Publicado: (2021) -
A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns
por: She, Xueyuan, et al.
Publicado: (2021) -
SpikePropamine: Differentiable Plasticity in Spiking Neural Networks
por: Schmidgall, Samuel, et al.
Publicado: (2021)