Cargando…
A novel probabilistic generator for large-scale gene association networks
MOTIVATION: Gene expression data provide an opportunity for reverse-engineering gene-gene associations using network inference methods. However, it is difficult to assess the performance of these methods because the true underlying network is unknown in real data. Current benchmarks address this pro...
Autores principales: | Grimes, Tyler, Datta, Somnath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589155/ https://www.ncbi.nlm.nih.gov/pubmed/34767561 http://dx.doi.org/10.1371/journal.pone.0259193 |
Ejemplares similares
-
Integrating gene regulatory pathways into differential network analysis of gene expression data
por: Grimes, Tyler, et al.
Publicado: (2019) -
A pseudo-value regression approach for differential network analysis of co-expression data
por: Ahn, Seungjun, et al.
Publicado: (2023) -
SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks
por: Sahraeian, Sayed Mohammad Ebrahim, et al.
Publicado: (2013) -
The Analysis of Gene Expression Data Incorporating Tumor Purity Information
por: Ahn, Seungjun, et al.
Publicado: (2021) -
Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles
por: Walker, Alejandro R., et al.
Publicado: (2018)