Cargando…
Treatment selection using prototyping in latent-space with application to depression treatment
Machine-assisted treatment selection commonly follows one of two paradigms: a fully personalized paradigm which ignores any possible clustering of patients; or a sub-grouping paradigm which ignores personal differences within the identified groups. While both paradigms have shown promising results,...
Autores principales: | Kleinerman, Akiva, Rosenfeld, Ariel, Benrimoh, David, Fratila, Robert, Armstrong, Caitrin, Mehltretter, Joseph, Shneider, Eliyahu, Yaniv-Rosenfeld, Amit, Karp, Jordan, Reynolds, Charles F., Turecki, Gustavo, Kapelner, Adam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589171/ https://www.ncbi.nlm.nih.gov/pubmed/34767577 http://dx.doi.org/10.1371/journal.pone.0258400 |
Ejemplares similares
-
Editorial: ML and AI Safety, Effectiveness and Explainability in Healthcare
por: Benrimoh, David, et al.
Publicado: (2021) -
Analysis of Features Selected by a Deep Learning Model for Differential Treatment Selection in Depression
por: Mehltretter, Joseph, et al.
Publicado: (2020) -
Machine-learning based routing of callers in an Israeli mental health hotline
por: Kleinerman, Akiva, et al.
Publicado: (2022) -
Using a simulation centre to evaluate preliminary acceptability and impact of an artificial intelligence-powered clinical decision support system for depression treatment on the physician–patient interaction
por: Benrimoh, David, et al.
Publicado: (2021) -
COVID-19 restrictions and visitations to an Israeli psychiatric emergency department: A four-lockdowns retrospective study
por: Yaniv-Rosenfeld, Amit, et al.
Publicado: (2023)