Cargando…
An oversampling method for multi-class imbalanced data based on composite weights
To solve the oversampling problem of multi-class small samples and to improve their classification accuracy, we develop an oversampling method based on classification ranking and weight setting. The designed oversampling algorithm sorts the data within each class of dataset according to the distance...
Autores principales: | Deng, Mingyang, Guo, Yingshi, Wang, Chang, Wu, Fuwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589211/ https://www.ncbi.nlm.nih.gov/pubmed/34767567 http://dx.doi.org/10.1371/journal.pone.0259227 |
Ejemplares similares
-
Evolutionary Mahalanobis Distance-Based Oversampling for Multi-Class Imbalanced Data Classification
por: Yao, Leehter, et al.
Publicado: (2021) -
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
An oversampling method for imbalanced data based on spatial distribution of minority samples SD-KMSMOTE
por: Yang, Wensheng, et al.
Publicado: (2022) -
Iterative Nearest Neighborhood Oversampling in Semisupervised Learning from Imbalanced Data
por: Li, Fengqi, et al.
Publicado: (2013) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022)