Cargando…
Liver fibrosis staging by deep learning: a visual-based explanation of diagnostic decisions of the model
OBJECTIVES: Deep learning has been proven to be able to stage liver fibrosis based on contrast-enhanced CT images. However, until now, the algorithm is used as a black box and lacks transparency. This study aimed to provide a visual-based explanation of the diagnostic decisions made by deep learning...
Autores principales: | Yin, Yunchao, Yakar, Derya, Dierckx, Rudi A. J. O., Mouridsen, Kim B., Kwee, Thomas C., de Haas, Robbert J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589780/ https://www.ncbi.nlm.nih.gov/pubmed/34014382 http://dx.doi.org/10.1007/s00330-021-08046-x |
Ejemplares similares
-
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2019) -
AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study
por: Roest, C., et al.
Publicado: (2022) -
Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging
por: Yin, Yunchao, et al.
Publicado: (2022) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis
por: Xue, Li-Yun, et al.
Publicado: (2020)