Cargando…
Performance of machine learning algorithms for glioma segmentation of brain MRI: a systematic literature review and meta-analysis
OBJECTIVES: Different machine learning algorithms (MLAs) for automated segmentation of gliomas have been reported in the literature. Automated segmentation of different tumor characteristics can be of added value for the diagnostic work-up and treatment planning. The purpose of this study was to pro...
Autores principales: | van Kempen, Evi J., Post, Max, Mannil, Manoj, Witkam, Richard L., ter Laan, Mark, Patel, Ajay, Meijer, Frederick J. A., Henssen, Dylan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589805/ https://www.ncbi.nlm.nih.gov/pubmed/34019128 http://dx.doi.org/10.1007/s00330-021-08035-0 |
Ejemplares similares
-
Accuracy of Machine Learning Algorithms for the Classification of Molecular Features of Gliomas on MRI: A Systematic Literature Review and Meta-Analysis
por: van Kempen, Evi J., et al.
Publicado: (2021) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023) -
Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI
por: Rahimpour, Masoomeh, et al.
Publicado: (2022) -
Joint segmentation and classification of hepatic lesions in ultrasound images using deep learning
por: Ryu, Hwaseong, et al.
Publicado: (2021) -
Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning
por: Duan, Caohui, et al.
Publicado: (2021)