Cargando…
A Deep Gravity model for mobility flows generation
The movements of individuals within and among cities influence critical aspects of our society, such as well-being, the spreading of epidemics, and the quality of the environment. When information about mobility flows is not available for a particular region of interest, we must rely on mathematical...
Autores principales: | Simini, Filippo, Barlacchi, Gianni, Luca, Massimilano, Pappalardo, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589995/ https://www.ncbi.nlm.nih.gov/pubmed/34772925 http://dx.doi.org/10.1038/s41467-021-26752-4 |
Ejemplares similares
-
Data-driven generation of spatio-temporal routines in human mobility
por: Pappalardo, Luca, et al.
Publicado: (2017) -
Returners and explorers dichotomy in human mobility
por: Pappalardo, Luca, et al.
Publicado: (2015) -
Human Mobility in a Continuum Approach
por: Simini, Filippo, et al.
Publicado: (2013) -
Generating mobility networks with generative adversarial networks
por: Mauro, Giovanni, et al.
Publicado: (2022) -
Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors
por: Barlacchi, Gianni, et al.
Publicado: (2017)