Cargando…
Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans
Deep learning (DL) is a breakthrough technology for medical imaging with high sample size requirements and interpretability issues. Using a pretrained DL model through a radiomics-guided approach, we propose a methodology for stratifying the prognosis of lung adenocarcinomas based on pretreatment CT...
Autores principales: | Cho, Hwan-ho, Lee, Ho Yun, Kim, Eunjin, Lee, Geewon, Kim, Jonghoon, Kwon, Junmo, Park, Hyunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590002/ https://www.ncbi.nlm.nih.gov/pubmed/34773070 http://dx.doi.org/10.1038/s42003-021-02814-7 |
Ejemplares similares
-
Are radiomics features universally applicable to different organs?
por: Lee, Seung-Hak, et al.
Publicado: (2021) -
Tumor Margin Contains Prognostic Information: Radiomic Margin Characteristics Analysis in Lung Adenocarcinoma Patients
por: Lee, Geewon, et al.
Publicado: (2021) -
A Cascaded Neural Network for Staging in Non-Small Cell Lung Cancer Using Pre-Treatment CT
por: Choi, Jieun, et al.
Publicado: (2021) -
Classification of the glioma grading using radiomics analysis
por: Cho, Hwan-ho, et al.
Publicado: (2018) -
Radiomics in Lung Cancer from Basic to Advanced: Current Status and Future Directions
por: Lee, Geewon, et al.
Publicado: (2020)