Cargando…
Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems
Recently, studies applying deep learning technology to recognize the machining feature of three-dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of boundary representation (B-rep) models as input data for neural networks in terms of data structure is d...
Autores principales: | Yeo, Changmo, Kim, Byung Chul, Cheon, Sanguk, Lee, Jinwon, Mun, Duhwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590007/ https://www.ncbi.nlm.nih.gov/pubmed/34772966 http://dx.doi.org/10.1038/s41598-021-01313-3 |
Ejemplares similares
-
3D convolutional neural network for machining feature recognition with gradient-based visual explanations from 3D CAD models
por: Lee, Jinwon, et al.
Publicado: (2022) -
Hybrid Deep Neural Network Framework Combining Skeleton and Gait Features for Pathological Gait Recognition
por: Jun, Kooksung, et al.
Publicado: (2023) -
Machine-learning-based ground sink susceptibility evaluation using underground pipeline data in Korean urban area
por: Park, Jun Hwan, et al.
Publicado: (2022) -
Deep Features for Training Support Vector Machines
por: Nanni, Loris, et al.
Publicado: (2021) -
Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition
por: Soures, Nicholas, et al.
Publicado: (2019)