Cargando…
Entropy-based metrics for predicting choice behavior based on local response to reward
For decades, behavioral scientists have used the matching law to quantify how animals distribute their choices between multiple options in response to reinforcement they receive. More recently, many reinforcement learning (RL) models have been developed to explain choice by integrating reward feedba...
Autores principales: | Trepka, Ethan, Spitmaan, Mehran, Bari, Bilal A., Costa, Vincent D., Cohen, Jeremiah Y., Soltani, Alireza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590026/ https://www.ncbi.nlm.nih.gov/pubmed/34772943 http://dx.doi.org/10.1038/s41467-021-26784-w |
Ejemplares similares
-
Combinations of low-level and high-level neural processes account for distinct patterns of context-dependent choice
por: Spitmaan, Mehran, et al.
Publicado: (2019) -
Subthreshold basis for reward-predictive persistent activity in mouse prefrontal cortex
por: Kim, Eunyoung, et al.
Publicado: (2021) -
Flexible combination of reward information during choice under uncertainty
por: Farashahi, Shiva, et al.
Publicado: (2019) -
Quantifying barcodes of dendritic spines using entropy-based metrics
por: Viggiano, D., et al.
Publicado: (2015) -
EAPB: entropy-aware path-based metric for ontology quality
por: Shen, Ying, et al.
Publicado: (2018)