Cargando…

Collapse dynamics and Hilbert-space stochastic processes

Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bajoni, Daniele, Nicrosini, Oreste, Rimini, Alberto, Rodini, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590063/
https://www.ncbi.nlm.nih.gov/pubmed/34772965
http://dx.doi.org/10.1038/s41598-021-00737-1
Descripción
Sumario:Spontaneous collapse models of state vector reduction represent a possible solution to the quantum measurement problem. In the present paper we focus our attention on the Ghirardi–Rimini–Weber (GRW) theory and the corresponding continuous localisation models in the form of a Brownian-driven motion in Hilbert space. We consider experimental setups in which a single photon hits a beam splitter and is subsequently detected by photon detector(s), generating a superposition of photon-detector quantum states. Through a numerical approach we study the dependence of collapse times on the physical features of the superposition generated, including also the effect of a finite reaction time of the measuring apparatus. We find that collapse dynamics is sensitive to the number of detectors and the physical properties of the photon-detector quantum states superposition.