Cargando…
A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP)
PURPOSE: We propose and evaluate a hybrid model composed of two convolutional neural networks (CNNs) with different architectures for automatic segmentation of retina layers in spectral domain optical coherence tomography (SD-OCT) B-scans of retinitis pigmentosa (RP). METHODS: The hybrid model consi...
Autores principales: | Wang, Yi-Zhong, Wu, Wenxuan, Birch, David G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590180/ https://www.ncbi.nlm.nih.gov/pubmed/34751740 http://dx.doi.org/10.1167/tvst.10.13.9 |
Ejemplares similares
-
Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa
por: Yang, Qi, et al.
Publicado: (2011) -
Multiple surface segmentation using convolution neural nets: application to retinal layer segmentation in OCT images
por: Shah, Abhay, et al.
Publicado: (2018) -
Differential pattern of RP1 mutations in retinitis pigmentosa
por: Zhang, Xin, et al.
Publicado: (2010) -
Retinitis Pigmentosa Due to Rp1 Biallelic Variants
por: Silva, Rita Sousa, et al.
Publicado: (2020) -
Adaptive optics ophthalmoscopy in retinitis pigmentosa (RP): Typical patterns
por: Kortuem, Friederike C., et al.
Publicado: (2022)