Cargando…
Deep scaffold hopping with multimodal transformer neural networks
Scaffold hopping is a central task of modern medicinal chemistry for rational drug design, which aims to design molecules of novel scaffolds sharing similar target biological activities toward known hit molecules. Traditionally, scaffolding hopping depends on searching databases of available compoun...
Autores principales: | Zheng, Shuangjia, Lei, Zengrong, Ai, Haitao, Chen, Hongming, Deng, Daiguo, Yang, Yuedong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590293/ https://www.ncbi.nlm.nih.gov/pubmed/34774103 http://dx.doi.org/10.1186/s13321-021-00565-5 |
Ejemplares similares
-
Describe Molecules by a Heterogeneous Graph Neural
Network with Transformer-like Attention for Supervised Property Predictions
por: Deng, Daiguo, et al.
Publicado: (2022) -
SyntaLinker: automatic fragment linking with deep conditional transformer neural networks
por: Yang, Yuyao, et al.
Publicado: (2020) -
QBMG: quasi-biogenic molecule generator with deep recurrent neural network
por: Zheng, Shuangjia, et al.
Publicado: (2019) -
Quantitative evaluation of explainable graph neural networks for molecular property prediction
por: Rao, Jiahua, et al.
Publicado: (2022) -
Structure-aware protein solubility prediction from sequence through graph convolutional network and predicted contact map
por: Chen, Jianwen, et al.
Publicado: (2021)