Cargando…
Semi-automated workflow for molecular pair analysis and QSAR-assisted transformation space expansion
In the process of drug discovery, the optimization of lead compounds has always been a challenge faced by pharmaceutical chemists. Matched molecular pair analysis (MMPA), a promising tool to efficiently extract and summarize the relationship between structural transformation and property change, is...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590336/ https://www.ncbi.nlm.nih.gov/pubmed/34774096 http://dx.doi.org/10.1186/s13321-021-00564-6 |
Sumario: | In the process of drug discovery, the optimization of lead compounds has always been a challenge faced by pharmaceutical chemists. Matched molecular pair analysis (MMPA), a promising tool to efficiently extract and summarize the relationship between structural transformation and property change, is suitable for local structural optimization tasks. Especially, the integration of MMPA with QSAR modeling can further strengthen the utility of MMPA in molecular optimization navigation. In this study, a new semi-automated procedure based on KNIME was developed to support MMPA on both large- and small-scale datasets, including molecular preparation, QSAR model construction, applicability domain evaluation, and MMP calculation and application. Two examples covering regression and classification tasks were provided to gain a better understanding of the importance of MMPA, which has also shown the reliability and utility of this MMPA-by-QSAR pipeline. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-021-00564-6. |
---|