Cargando…
Machine learning for image-based detection of patients with obstructive sleep apnea: an exploratory study
PURPOSE: In 2-dimensional lateral cephalometric radiographs, patients with severe obstructive sleep apnea (OSA) exhibit a more crowded oropharynx in comparison with non-OSA. We tested the hypothesis that machine learning, an application of artificial intelligence (AI), could be used to detect patien...
Autores principales: | Tsuiki, Satoru, Nagaoka, Takuya, Fukuda, Tatsuya, Sakamoto, Yuki, Almeida, Fernanda R., Nakayama, Hideaki, Inoue, Yuichi, Enno, Hiroki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590647/ https://www.ncbi.nlm.nih.gov/pubmed/33559004 http://dx.doi.org/10.1007/s11325-021-02301-7 |
Ejemplares similares
-
Obstructive Sleep Apnea: A Case Report
por: Subramaniam, Mohithan, et al.
Publicado: (2023) -
Identification of Patients at Risk of Obstructive Sleep Apnea in Dental Settings
por: Sindi, Mohammed A, et al.
Publicado: (2023) -
Mandibular Advancement Device (MAD) for Obstructive Sleep Apnea in an Edentulous Patient
por: Burugpalli, Ayesha, et al.
Publicado: (2022) -
Control of Tongue Position in Patients with Obstructive Sleep Apnea: Concept and Protocol for a Randomized Controlled Crossover Trial
por: Fukuda, Tatsuya, et al.
Publicado: (2023) -
Obstructive Sleep Apnea Awareness Among Dentists in Saudi Arabia: A Cross-Sectional Study
por: Sawan, Nozha, et al.
Publicado: (2023)