Cargando…
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
BACKGROUND: The 3D U-Net model has been proved to perform well in the automatic organ segmentation. The aim of this study is to evaluate the feasibility of the 3D U-Net algorithm for the automated detection and segmentation of lymph nodes (LNs) on pelvic diffusion-weighted imaging (DWI) images. METH...
Autores principales: | Liu, Xiang, Sun, Zhaonan, Han, Chao, Cui, Yingpu, Huang, Jiahao, Wang, Xiangpeng, Zhang, Xiaodong, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590773/ https://www.ncbi.nlm.nih.gov/pubmed/34774001 http://dx.doi.org/10.1186/s12880-021-00703-3 |
Ejemplares similares
-
Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer
por: Liu, Xiang, et al.
Publicado: (2022) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Semiautomated pelvic lymph node treatment response evaluation for patients with advanced prostate cancer: based on MET-RADS-P guidelines
por: Liu, Xiang, et al.
Publicado: (2023) -
Automatic segmentation of rectal tumor on diffusion‐weighted images by deep learning with U‐Net
por: Zhu, Hai‐Tao, et al.
Publicado: (2021) -
Detection and Segmentation of Pelvic Bones Metastases in MRI Images for Patients With Prostate Cancer Based on Deep Learning
por: Liu, Xiang, et al.
Publicado: (2021)