Cargando…
Early prediction of hemodynamic interventions in the intensive care unit using machine learning
BACKGROUND: Timely recognition of hemodynamic instability in critically ill patients enables increased vigilance and early treatment opportunities. We develop the Hemodynamic Stability Index (HSI), which highlights situational awareness of possible hemodynamic instability occurring at the bedside an...
Autores principales: | Rahman, Asif, Chang, Yale, Dong, Junzi, Conroy, Bryan, Natarajan, Annamalai, Kinoshita, Takahiro, Vicario, Francesco, Frassica, Joseph, Xu-Wilson, Minnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8590869/ https://www.ncbi.nlm.nih.gov/pubmed/34775971 http://dx.doi.org/10.1186/s13054-021-03808-x |
Ejemplares similares
-
A clinical prediction model to identify patients at high risk of hemodynamic instability in the pediatric intensive care unit
por: Potes, Cristhian, et al.
Publicado: (2017) -
Association of systolic, diastolic, mean, and pulse pressure with morbidity and mortality in septic ICU patients: a nationwide observational study
por: Khanna, Ashish K., et al.
Publicado: (2023) -
Continuous noninvasive blood gas estimation in critically ill pediatric patients with respiratory failure
por: Dong, Junzi, et al.
Publicado: (2022) -
Early Prediction of Cardiogenic Shock Using Machine Learning
por: Chang, Yale, et al.
Publicado: (2022) -
External validation of a machine learning model to predict hemodynamic instability in intensive care unit
por: Dung-Hung, Chiang, et al.
Publicado: (2022)