Cargando…

Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications

Nanocellulose, a biopolymer, has received wide attention from researchers owing to its superior physicochemical properties, such as high mechanical strength, low density, biodegradability, and biocompatibility. Nanocellulose can be extracted from wide range of sources, including plants, bacteria, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Patil, Tejal V., Patel, Dinesh K., Dutta, Sayan Deb, Ganguly, Keya, Santra, Tuhin Subhra, Lim, Ki-Taek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591404/
https://www.ncbi.nlm.nih.gov/pubmed/34820589
http://dx.doi.org/10.1016/j.bioactmat.2021.07.006
Descripción
Sumario:Nanocellulose, a biopolymer, has received wide attention from researchers owing to its superior physicochemical properties, such as high mechanical strength, low density, biodegradability, and biocompatibility. Nanocellulose can be extracted from wide range of sources, including plants, bacteria, and algae. Depending on the extraction process and dimensions (diameter and length), they are categorized into three main types: cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial nanocellulose (BNC). CNCs are a highly crystalline and needle-like structure, whereas CNFs have both amorphous and crystalline regions in their network. BNC is the purest form of nanocellulose. The nanocellulose properties can be tuned by chemical functionalization, which increases its applicability in biomedical applications. This review highlights the fabrication of different surface-modified nanocellulose to deliver active molecules, such as drugs, proteins, and plasmids. Nanocellulose-mediated delivery of active molecules is profoundly affected by its topographical structure and the interaction between the loaded molecules and nanocellulose. The applications of nanocellulose and its composites in tissue engineering have been discussed. Finally, the review is concluded with further opportunities and challenges in nanocellulose-mediated delivery of active molecules.