Cargando…
Fitting and Cross-Validating Cox Models to Censored Big Data With Missing Values Using Extensions of Partial Least Squares Regression Models
Fitting Cox models in a big data context -on a massive scale in terms of volume, intensity, and complexity exceeding the capacity of usual analytic tools-is often challenging. If some data are missing, it is even more difficult. We proposed algorithms that were able to fit Cox models in high dimensi...
Autores principales: | Bertrand , Frédéric, Maumy-Bertrand , Myriam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591675/ https://www.ncbi.nlm.nih.gov/pubmed/34790895 http://dx.doi.org/10.3389/fdata.2021.684794 |
Ejemplares similares
-
Compressor map regression modelling based on partial least squares
por: Li, Xu, et al.
Publicado: (2018) -
Circular and linear regression: fitting circles and lines by least squares
por: Chernov, Nikolai
Publicado: (2010) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
Chi-squared goodness-of-fit tests for censored data
por: Nikulin, Mikhail S, et al.
Publicado: (2017) -
Modeling the Ranked Antenatal Care Visits Using Optimized Partial Least Square Regression
por: Sadiq, Maryam, et al.
Publicado: (2022)