Cargando…

[Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes

A finite element cochain complex on Cartesian meshes of any dimension based on the [Formula: see text] -inner product is introduced. It yields [Formula: see text] -conforming finite element spaces with exterior derivatives in [Formula: see text] . We use a tensor product construction to obtain [Form...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonizzoni, Francesca, Kanschat, Guido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591684/
https://www.ncbi.nlm.nih.gov/pubmed/34803174
http://dx.doi.org/10.1007/s10092-021-00409-6
_version_ 1784599305080799232
author Bonizzoni, Francesca
Kanschat, Guido
author_facet Bonizzoni, Francesca
Kanschat, Guido
author_sort Bonizzoni, Francesca
collection PubMed
description A finite element cochain complex on Cartesian meshes of any dimension based on the [Formula: see text] -inner product is introduced. It yields [Formula: see text] -conforming finite element spaces with exterior derivatives in [Formula: see text] . We use a tensor product construction to obtain [Formula: see text] -stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order.
format Online
Article
Text
id pubmed-8591684
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-85916842021-11-19 [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes Bonizzoni, Francesca Kanschat, Guido Calcolo Article A finite element cochain complex on Cartesian meshes of any dimension based on the [Formula: see text] -inner product is introduced. It yields [Formula: see text] -conforming finite element spaces with exterior derivatives in [Formula: see text] . We use a tensor product construction to obtain [Formula: see text] -stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order. Springer International Publishing 2021-04-08 2021 /pmc/articles/PMC8591684/ /pubmed/34803174 http://dx.doi.org/10.1007/s10092-021-00409-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bonizzoni, Francesca
Kanschat, Guido
[Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title_full [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title_fullStr [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title_full_unstemmed [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title_short [Formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on Cartesian meshes
title_sort [formula: see text] -conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591684/
https://www.ncbi.nlm.nih.gov/pubmed/34803174
http://dx.doi.org/10.1007/s10092-021-00409-6
work_keys_str_mv AT bonizzonifrancesca formulaseetextconformingfiniteelementcochaincomplexesandcommutingquasiinterpolationoperatorsoncartesianmeshes
AT kanschatguido formulaseetextconformingfiniteelementcochaincomplexesandcommutingquasiinterpolationoperatorsoncartesianmeshes