Cargando…
Arbitrary-order intrinsic virtual element method for elliptic equations on surfaces
We develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The kn...
Autores principales: | Bachini, Elena, Manzini, Gianmarco, Putti, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591694/ https://www.ncbi.nlm.nih.gov/pubmed/34803175 http://dx.doi.org/10.1007/s10092-021-00418-5 |
Ejemplares similares
-
Second order elliptic equations and elliptic systems
por: Chen, Ya-Zhe, et al.
Publicado: (1998) -
The mimetic finite difference method for elliptic problems
por: Veiga, Lourenço Beirão, et al.
Publicado: (2014) -
Optimising orbit counting of arbitrary order by equation selection
por: Melckenbeeck, Ine, et al.
Publicado: (2019) -
Nonlinear elliptic equations of the second order
por: Han, Qing
Publicado: (2016) -
Elliptic partial differential equations of second order
por: Gilbarg, David G, et al.
Publicado: (1977)