Cargando…
Enhancing data pipelines for forecasting student performance: integrating feature selection with cross-validation
Educators seek to harness knowledge from educational corpora to improve student performance outcomes. Although prior studies have compared the efficacy of data mining methods (DMMs) in pipelines for forecasting student success, less work has focused on identifying a set of relevant features prior to...
Autores principales: | Bertolini, Roberto, Finch, Stephen J., Nehm, Ross H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591701/ https://www.ncbi.nlm.nih.gov/pubmed/34805485 http://dx.doi.org/10.1186/s41239-021-00279-6 |
Ejemplares similares
-
Illuminating the complexities of conflict with evolution: validation of the scales of evolutionary conflict measure (SECM)
por: Sbeglia, Gena C., et al.
Publicado: (2020) -
High Performance Integration Pipeline for Viral and Epitope Sequences
por: Alfonsi, Tommaso, et al.
Publicado: (2022) -
Selection bias in the reported performances of AD classification pipelines
por: Mendelson, Alex F., et al.
Publicado: (2016) -
SA-FEM: Combined Feature Selection and Feature Fusion for Students’ Performance Prediction
por: Ye, Mingtao, et al.
Publicado: (2022) -
Are Faculty Changing? How Reform Frameworks, Sampling Intensities, and Instrument Measures Impact Inferences about Student-Centered Teaching Practices
por: Sbeglia, Gena C., et al.
Publicado: (2021)