Cargando…
Are wearable devices effective for preventing and detecting falls: an umbrella review (a review of systematic reviews)
BACKGROUND: Falls are a common and serious health issue facing the global population, causing an estimated 646,000 deaths per year globally. Wearable devices typically combine accelerometers, gyroscopes and even barometers; using the data collected and inputting this into an algorithm that decides w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591794/ https://www.ncbi.nlm.nih.gov/pubmed/34775947 http://dx.doi.org/10.1186/s12889-021-12169-7 |
Sumario: | BACKGROUND: Falls are a common and serious health issue facing the global population, causing an estimated 646,000 deaths per year globally. Wearable devices typically combine accelerometers, gyroscopes and even barometers; using the data collected and inputting this into an algorithm that decides whether a fall has occurred. The purpose of this umbrella review was to provide a comprehensive overview of the systematic reviews on the effectiveness of wearable electronic devices for falls detection in adults. METHODS: MEDLINE, Embase, Cochrane Database of Systematic Reviews (CDSR), and CINAHL, were searched from their inceptions until April 2019 for systematic reviews that assessed the accuracy of wearable technology in the detection of falls. RESULTS: Seven systematic reviews were included in this review. Due to heterogeneity between the included systematic reviews in their methods and their reporting of results, a meta-analysis could not be performed. Most devices tested used accelerometers, often in combination with gyroscopes. Three systematic reviews reported an average sensitivity of 93.1% or greater and an average specificity of 86.4% or greater for the detection of falls. Placing sensors on the trunk, foot or leg appears to provide the highest accuracy for falls detection, with multiple sensors increasing the accuracy, specificity, and sensitivity of these devices. CONCLUSIONS: This review demonstrated that wearable device technology offers a low-cost and accurate way to effectively detect falls and summon for help. There are significant differences in the effectiveness of these devices depending on the type of device and its placement. Further high-quality research is needed to confirm the accuracy of these devices in frail older people in real-world settings. |
---|