Cargando…
Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients
OBJECTIVE: The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy and to compare the performance of DVH and dosiomic features after adjustm...
Autores principales: | Puttanawarut, Chanon, Sirirutbunkajorn, Nat, Khachonkham, Suphalak, Pattaranutaporn, Poompis, Wongsawat, Yodchanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591796/ https://www.ncbi.nlm.nih.gov/pubmed/34775975 http://dx.doi.org/10.1186/s13014-021-01950-y |
Ejemplares similares
-
Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer
por: Puttanawarut, Chanon, et al.
Publicado: (2022) -
Impact of Interfractional Error on Dosiomic Features
por: Puttanawarut, Chanon, et al.
Publicado: (2022) -
Dosiomics: Extracting 3D Spatial Features From Dose Distribution to Predict Incidence of Radiation Pneumonitis
por: Liang, Bin, et al.
Publicado: (2019) -
Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: dosiomics and/or deep learning-based radiomics features
por: Huang, Ying, et al.
Publicado: (2022) -
Dosiomics and radiomics to predict pneumonitis after thoracic stereotactic body radiotherapy and immune checkpoint inhibition
por: Kraus, Kim Melanie, et al.
Publicado: (2023)