Cargando…
Machine learning adaptation of intraocular lens power calculation for a patient group
BACKGROUND: To examine the effectiveness of the use of machine learning for adapting an intraocular lens (IOL) power calculation for a patient group. METHODS: In this retrospective study, the clinical records of 1,611 eyes of 1,169 Japanese patients who received a single model of monofocal IOL (SN60...
Autores principales: | Mori, Yosai, Yamauchi, Tomofusa, Tokuda, Shota, Minami, Keiichiro, Tabuchi, Hitoshi, Miyata, Kazunori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591948/ https://www.ncbi.nlm.nih.gov/pubmed/34775991 http://dx.doi.org/10.1186/s40662-021-00265-z |
Ejemplares similares
-
Effect of the ratio of axial length to keratometry on SRK/T intraocular lens power calculations for eyes with long axial lengths
por: Mori, Yosai, et al.
Publicado: (2019) -
Training data size and predication errors in the use of machine-learning assisted intraocular lens power calculation
por: Tabuchi, Hitoshi, et al.
Publicado: (2023) -
Predictability of Intraocular Lens Power Calculation for Cataract with Keratoconus: A Multicenter Study
por: Kamiya, Kazutaka, et al.
Publicado: (2018) -
Influence of implantation of diffractive trifocal intraocular lenses on standard automated perimetry
por: Lee, Jinhee, et al.
Publicado: (2022) -
Functional visual acuity after implantation of diffractive extended depth-of-focus intraocular lenses using an echelett optics
por: Sakisaka, Toshihiro, et al.
Publicado: (2021)