Cargando…
Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
The COVID-19 pandemic is the most serious catastrophe since the Second World War. To predict the epidemic more accurately under the influence of policies, a framework based on Independently Recurrent Neural Network (IndRNN) with fine-tuning are proposed for predict the epidemic development trend of...
Autores principales: | Hong, Zhonghua, Fan, Ziyang, Tong, Xiaohua, Zhou, Ruyan, Pan, Haiyan, Zhang, Yun, Han, Yanling, Wang, Jing, Yang, Shuhu, Wu, Hong, Li, Jiahao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592248/ https://www.ncbi.nlm.nih.gov/pubmed/34825057 http://dx.doi.org/10.7717/peerj-cs.770 |
Ejemplares similares
-
Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution
por: Wu, Binrong, et al.
Publicado: (2022) -
Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN
por: Ma, Mengnan, et al.
Publicado: (2021) -
A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition †
por: Zhao, Beidi, et al.
Publicado: (2020) -
piRNN: deep learning algorithm for piRNA prediction
por: Wang, Kai, et al.
Publicado: (2018) -
ArVirInd—a database of arboviral antigenic proteins from the Indian subcontinent
por: Atre, Nitin Motilal, et al.
Publicado: (2022)