Cargando…
A Generative Model to Synthesize EEG Data for Epileptic Seizure Prediction
Objective: Scarcity of good quality electroencephalography (EEG) data is one of the roadblocks for accurate seizure prediction. This work proposes a deep convolutional generative adversarial network (DCGAN) to generate synthetic EEG data. Another objective of our study is to use transfer-learning (T...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592500/ https://www.ncbi.nlm.nih.gov/pubmed/34727036 http://dx.doi.org/10.1109/TNSRE.2021.3125023 |
Ejemplares similares
-
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
por: Alotaiby, Turky N., et al.
Publicado: (2017) -
Epileptic Disorder Detection of Seizures Using EEG Signals
por: Alharthi, Mariam K., et al.
Publicado: (2022) -
Detection of Epileptic Seizure Event and Onset Using EEG
por: Ahammad, Nabeel, et al.
Publicado: (2014) -
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018)