Cargando…
Visually guided preprocessing of bioanalytical laboratory data using an interactive R notebook (pguIMP)
The evaluation of pharmacological data using machine learning requires high data quality. Therefore, data preprocessing, that is, cleaning analytical laboratory errors, replacing missing values or outliers, and transforming data adequately before actual data analysis, is crucial. Because current too...
Autores principales: | Malkusch, Sebastian, Hahnefeld, Lisa, Gurke, Robert, Lötsch, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592507/ https://www.ncbi.nlm.nih.gov/pubmed/34598320 http://dx.doi.org/10.1002/psp4.12704 |
Ejemplares similares
-
Pgu-Face: A dataset of partially covered facial images
por: Salari, Seyed Reza, et al.
Publicado: (2016) -
Data visualization for business decisions: a laboratory notebook
por: Fortino, Andres
Publicado: (2020) -
Writing the laboratory notebook
por: Kanare, Howard M., 1953-
Publicado: (1985) -
Optimal distribution-preserving downsampling of large biomedical data sets (opdisDownsampling)
por: Lötsch, Jörn, et al.
Publicado: (2021) -
Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis
por: Kringel, Dario, et al.
Publicado: (2021)