Cargando…
Heterogeneous treatment effect analysis based on machine‐learning methodology
Heterogeneous treatment effect (HTE) analysis focuses on examining varying treatment effects for individuals or subgroups in a population. For example, an HTE‐informed understanding can critically guide physicians to individualize the medical treatment for a certain disease. However, HTE analysis ha...
Autores principales: | Gong, Xiajing, Hu, Meng, Basu, Mahashweta, Zhao, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592515/ https://www.ncbi.nlm.nih.gov/pubmed/34716669 http://dx.doi.org/10.1002/psp4.12715 |
Ejemplares similares
-
Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time‐to‐Event Analysis
por: Gong, Xiajing, et al.
Publicado: (2018) -
Discovering Effective Connectivity in Neural Circuits: Analysis Based on Machine Learning Methodology
por: Pozo-Jimenez, Pedro, et al.
Publicado: (2021) -
Spatial heterogeneity in the exclusive use of hygienic materials during menstruation among women in urban India
por: Singh, Aditya, et al.
Publicado: (2023) -
Metalearners for estimating heterogeneous treatment effects using machine learning
por: Künzel, Sören R., et al.
Publicado: (2019) -
Virtual screening FDA approved drugs against multiple targets of SARS‐CoV‐2
por: Liang, Hualou, et al.
Publicado: (2021)