Cargando…
Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved
OBJECTIVE: Evaluate the completeness of reporting of prognostic prediction models developed using machine learning methods in the field of oncology. STUDY DESIGN AND SETTING: We conducted a systematic review, searching the MEDLINE and Embase databases between 01/01/2019 and 05/09/2019, for non-imagi...
Autores principales: | Dhiman, Paula, Ma, Jie, Navarro, Constanza Andaur, Speich, Benjamin, Bullock, Garrett, Damen, Johanna AA, Kirtley, Shona, Hooft, Lotty, Riley, Richard D, Van Calster, Ben, Moons, Karel G.M., Collins, Gary S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592577/ https://www.ncbi.nlm.nih.gov/pubmed/34214626 http://dx.doi.org/10.1016/j.jclinepi.2021.06.024 |
Ejemplares similares
-
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
por: Dhiman, Paula, et al.
Publicado: (2022) -
Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
por: Dhiman, Paula, et al.
Publicado: (2022) -
Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques
por: Andaur Navarro, Constanza L, et al.
Publicado: (2020) -
Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
por: Collins, Gary S, et al.
Publicado: (2021) -
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
por: Andaur Navarro, Constanza L, et al.
Publicado: (2021)