Cargando…
The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection
OBJECTIVE: To uncover the application value of metagenomic next-generation sequencing (mNGS) in the detection of pathogen in bronchoalveolar lavage fluid (BALF) and sputum samples. METHODS: Totally, 32 patients with pulmonary infection were included. Pathogens in BALF and sputum samples were tested...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592753/ https://www.ncbi.nlm.nih.gov/pubmed/34790254 http://dx.doi.org/10.1155/2021/7238495 |
_version_ | 1784599538738135040 |
---|---|
author | Shi, Wanghui Zhu, Shanshan |
author_facet | Shi, Wanghui Zhu, Shanshan |
author_sort | Shi, Wanghui |
collection | PubMed |
description | OBJECTIVE: To uncover the application value of metagenomic next-generation sequencing (mNGS) in the detection of pathogen in bronchoalveolar lavage fluid (BALF) and sputum samples. METHODS: Totally, 32 patients with pulmonary infection were included. Pathogens in BALF and sputum samples were tested simultaneously by routine microbial culture and mNGS. Main infected pathogens (bacteria, fungi, and viruses) and their distribution in BALF and sputum samples were analyzed. Moreover, the diagnostic performance of mNGS in paired BALF and sputum samples was assessed. RESULTS: The pathogen culture results were positive in 9 patients and negative in 13 patients. No statistical differences were recorded on the sensitivity (78.94% vs. 63.15%, p = 0.283) and specificity (62.50% vs. 75.00%, p = 0.375) of mNGS diagnosis in bacteria and fungus in two types of samples. As shown in mNGS detection, 10 patients' two samples were both positive, 13 patients' two samples were both negative, 7 patients were only positive in BALF samples, and 2 patients' sputum samples were positive. Main viruses mNGS detected were EB virus, human adenovirus 5, herpes simplex virus type 1, and human cytomegalovirus. Kappa consensus analysis indicated that mNGS showed significant consistency in detecting pathogens in two samples, no matter bacteria (p < 0.001), fungi (p = 0.026), or viruses (p = 0.008). CONCLUSION: mNGS showed no statistical differences in sensitivity and specificity of pathogen detection in BALF and sputum samples. Under certain conditions, sputum samples might be more suitable for pathogen detection because of invasiveness of BALF samples. |
format | Online Article Text |
id | pubmed-8592753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-85927532021-11-16 The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection Shi, Wanghui Zhu, Shanshan Comput Math Methods Med Research Article OBJECTIVE: To uncover the application value of metagenomic next-generation sequencing (mNGS) in the detection of pathogen in bronchoalveolar lavage fluid (BALF) and sputum samples. METHODS: Totally, 32 patients with pulmonary infection were included. Pathogens in BALF and sputum samples were tested simultaneously by routine microbial culture and mNGS. Main infected pathogens (bacteria, fungi, and viruses) and their distribution in BALF and sputum samples were analyzed. Moreover, the diagnostic performance of mNGS in paired BALF and sputum samples was assessed. RESULTS: The pathogen culture results were positive in 9 patients and negative in 13 patients. No statistical differences were recorded on the sensitivity (78.94% vs. 63.15%, p = 0.283) and specificity (62.50% vs. 75.00%, p = 0.375) of mNGS diagnosis in bacteria and fungus in two types of samples. As shown in mNGS detection, 10 patients' two samples were both positive, 13 patients' two samples were both negative, 7 patients were only positive in BALF samples, and 2 patients' sputum samples were positive. Main viruses mNGS detected were EB virus, human adenovirus 5, herpes simplex virus type 1, and human cytomegalovirus. Kappa consensus analysis indicated that mNGS showed significant consistency in detecting pathogens in two samples, no matter bacteria (p < 0.001), fungi (p = 0.026), or viruses (p = 0.008). CONCLUSION: mNGS showed no statistical differences in sensitivity and specificity of pathogen detection in BALF and sputum samples. Under certain conditions, sputum samples might be more suitable for pathogen detection because of invasiveness of BALF samples. Hindawi 2021-11-08 /pmc/articles/PMC8592753/ /pubmed/34790254 http://dx.doi.org/10.1155/2021/7238495 Text en Copyright © 2021 Wanghui Shi and Shanshan Zhu. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shi, Wanghui Zhu, Shanshan The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title | The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title_full | The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title_fullStr | The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title_full_unstemmed | The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title_short | The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection |
title_sort | application of metagenomic next-generation sequencing in detection of pathogen in bronchoalveolar lavage fluid and sputum samples of patients with pulmonary infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592753/ https://www.ncbi.nlm.nih.gov/pubmed/34790254 http://dx.doi.org/10.1155/2021/7238495 |
work_keys_str_mv | AT shiwanghui theapplicationofmetagenomicnextgenerationsequencingindetectionofpathogeninbronchoalveolarlavagefluidandsputumsamplesofpatientswithpulmonaryinfection AT zhushanshan theapplicationofmetagenomicnextgenerationsequencingindetectionofpathogeninbronchoalveolarlavagefluidandsputumsamplesofpatientswithpulmonaryinfection AT shiwanghui applicationofmetagenomicnextgenerationsequencingindetectionofpathogeninbronchoalveolarlavagefluidandsputumsamplesofpatientswithpulmonaryinfection AT zhushanshan applicationofmetagenomicnextgenerationsequencingindetectionofpathogeninbronchoalveolarlavagefluidandsputumsamplesofpatientswithpulmonaryinfection |